

Name of the customer (Internal or affiliate case studies will not be accepted)
Comafi Bank

AWS Account ID (Will be used to verify AWS service usage)
008729895921

Problem statement/definition

Comafi Bank is a private capital bank located in Buenos Aires city, with 65 sites
distributed in capital cities of Argentina. It has no sites on foreign countries.

The bank was on the verge of releasing a series of onboarding digital processes
which involved web applications and tailored business circuits and tasks using aws step
functions, lambda, api gateway, dynamodb and AWS Elastic Search. (Onboarding
Application onwards).

The Onboarding application is a serverless application developed in NodeJS and
entirely hosted inside AWS services. With this in mind, the customer contacted us in order to
develop an ETL process from the logs and app data, to process, aggregate and leverage
this information. The full requirement included the implementation of a cloud data lake and
an analytics platform that could store and centralize the business application and logging
data.

Additionally, there was a requirement that highly variable data needed to be stored in
a data warehouse-like service, using a tabular format, so their BI area, which mostly has
SQL knowledge, could easily create operations and high level reports using Power BI.
Power Bi was a constraint due to pre existent licensing deals that the customer had, locking
that reporting tool for some time.

Therefore our tasks during this project were:
1. Implement a data lake structure supporting application and logging data
2. Process and store the aforementioned data, through ETL processes.
3. Store additional needed data in a tabular format, in a data warehouse, so it

could be leveraged by the BI area.
There was also a time and budget constraint.

What you proposed

In order to give an answer to the requirement, we proposed the use of AWS services
as cloud infrastructure to support the data lake and analytics platform. As implementation
time was an important constraint, we suggested doing an iterative process through different
MVPs, in order to be able to respond to the immediate requirements as fast as possible, and
improve the workflow afterwards.

With this in mind, the initial suggested architecture included the use of:
● Redshift as a Data Warehouse to support fast OLAP
● S3 to support the Data Lake structure
● AWS Glue for the ETL process and for crawlers.
● Athena to query over S3 data and to be used as connector for PowerBI.

How AWS services were used as part of the solution

The following services were additionally used, in addition to the ones previously mentioned:

● Lambdas were used for serverless processing and events management.
● AWS KMS was used to support encryption keys.
● CloudWatch was used to hold and check logs.
● SQS was used to orchestrate process and reduce the overload on redshift writes.
● SNS was used to manage notifications and email sending.

Third party applications or solutions used

PowerBI

Start and end dates of project (Case studies must be for projects started within the
past 24 months, and must be for projects that are in production)

July 2019 to February 2020.

Outcome(s)/results

The initially suggested architecture received several updates due to budget
constraints and additional client restrictions. This difficulties were taken into account and we
managed to create a successful solution that met the client requirements while trying to find
the best way to introduce the architecture best practices.

The implementation of the data analytics zone, including a data lake in three zones, a
Data Warehouse supported by Redshift, and the automation of the ETL processes, allowed
the data & analytics team at Comafi to improve their productivity, allowing them to work in
isolated environments in order to have a more flexible area to modify data without disrupting
the business processes, and a faster and wider access to existing data.

These advantages allowed Comafi to better leverage their data, improving their
decision making process and obtaining faster conclusions through the optimized cloud
infrastructure that, now, supports their processes.

Lessons Learned

Every solution has to be tailored to the client needs, even though the first approach is
to follow the best architectural practices. Budget and time constraints are a challenge that
needs to be taken into account when developing the solution.

2.2Architecture Diagrams

The initial diagram proposed consist, as we mentioned, in the use of S3 to support the data
lake, redshift to support the data warehouse and glue jobs to perform the ETLs processes.
In this case, since all the processes were directly hosted inside AWS (both the onboarding
application and the whole ETL process, storage and reporting), everything was managed
through private networks. There is no external traffic.

The selected region is North Virginia (us-east-1), with subnets ranging through
different Availability Zones. The CIDRs used were:

● 172.26.64.0/26
● 172.26.64.64/26
● 172.26.64.128//26
● 192.168.96.0/26
● 192.168.96.64/26
● 192.168.96.128/26

The solution proposed at first was:

During the development process, the client required to reduce glue costs and

achieve a faster processing time. Since the ETL processes carried out were relatively small,
we migrated glue jobs to lambdas. Additionally, in order to synchronize the different lambdas
related to the process we proposed to use SQS.

The resulting architecture is depicted in the following diagrams.
General Diagram:

Use of SQS to orchestrate the data flow between processes. Layer 1

Use of SQS to orchestrate the data flow between processes after writing to S3. Layer 2

Monitoring Solution. Layer 3

Any error produced ends up in a SQS Dead Letter Queue, independent for each
layer transition, mapped to the normal execution sqs queue. Every single queue is linked
through triggers to a general handle lambda which persists the message in s3 bucket and
does a little transformation to leave in a friendly readable tabular format which can be
queried using Athena or Redshift Spectrum.

Additionally, an email is published through an SNS and most important, the error
messages with all the data necessary for reprocessing go to a max retention period
configured sqs where an on demand reprocessing on demand can be executed.

RED-001 - Data storage is optimized based on metrics and patterns

In order to choose sorting keys, we had several meetings with the different
stakeholders to check how data needed to be served. This meetings allowed us to better
understand the queries that were going to be made and, thus, choose the appropriate
sorting keys for each case.

The data structure stored by the Redshift DW for Comafi consists in a enriched log in
a tabular format, that reports certain aspects of the onboarding application developed by
Comafi, which is used by their customers. The queries to be made on this data are, mainly,
related to log times. The BI analysts will be querying data with two approaches. The first
approach is to query data to obtain the most recent logs. The second one is filtering on a
time range (weekly, monthly). The sorting keys, therefore, were timestamp based.

Compression was managed by Redshift automatically in the following ways:

● Columns that are defined as sort keys are assigned RAW compression.
● Columns that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types

are assigned RAW compression.
● Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE,

TIMESTAMP, or TIMESTAMPTZ data types are assigned AZ64 compression.
● Columns that are defined as CHAR or VARCHAR data types are assigned LZO

compression..

The maintenance of the Redshift cluster includes regular vacuuming, according to
the frequency and quantity of data loaded. For this particular case, and according to the
work hours and peak consumption we suggested a nightly schema.

RED-002 - Redshift Database User Access Management and Security is following best
practices

The AWS account was set up from scratch, the root account remained in the hands
of the customer, and we created an IAM user for the engineer deploying the infrastructure
with it’s proper permissions and an IAM group for the customer operations team. Specifically
for Redshift, the following roles were created:

● A role for services and applications that would query the data in Redshift (like
PowerBI), only giving permissions to list and read data.

● A role for Lambdas which wrote data to Redshift were given write and create
permissions, according to the tables needed.

● A role for Redshift that also has list and read permissions for S3 in order to
use Redshift Spectrum to read data stored in the data lake.

Finally, data in Redshift was encrypted with KMS service.

RED-003 - Workload Management is configured properly to meet application needs

When we migrated from glue jobs to lambdas, which allowed us to provide a faster
workflow at a significantly lower cost, we started having issues with workload in the redshift

master. The problems were related to an over saturation of COPY operations. We tried to
apply a custom workload management, and we even tested upscaling the number of nodes
available. However, we didn’t achieve the expected result, since cost constraints were really
tight. Therefore, we managed to implement a schema where we buffered data to be written
to the RedShift cluster through a SQS queue. This allowed us to meet the client
requirements both in cost and in operational speed. The final implementation was a schema
with (1)Producer - (2)Queue - (3) Producer - (4) Lambda Transformation between every
layer.

RED-004 - Solution Composition Requirements

In this case we built a data lake, supported by Amazon S3, which is queried both by Athena
and by Redshift Spectrum. The data lake is partitioned on a date schema, according to the
client needs, in order to reduce the amount of data scanned in each query. Data on Redshift
is also partitioned and sorted into a datetime schema, in accordance to the needs of the
business layer of Comafi. Data Modeling was done in collaborative work with the team at
Comafi, and was built upon their needs, respecting AWS best practices where possible.

General

ACCT-001 - The root user is secured

Root User has not been assigned access keys and has been only used to manage the first
accounts, admins and power users. MFA is enabled on the root user.
Each user has been assigned a user, and services that interact with other services have
been assigned roles. Policies and group permissions have been elaborated with an
acceptable and secure granularity.

ACCT-002 - Account contact information is set

The Operations, Billing, and Security contact email addresses are set, and all account
contact information, including the root user email address, is set to a corporate email
address.

ACCT-003 - AWS CloudTrail is enabled

AWS Cloudtrail was suggested as an important part of the Comafi architecture. We
implemented this feature with a log of the cloudtrail events dumped to an S3 specific bucket.

Operational Excellence
Requirements in this category relate to the ability of the APN Partner and the customer to
run and monitor systems to delivery business value and to continually improve supporting
processes and procedures.

OPE-001 - Metrics are defined for understanding the health of the workload

In order to better understand the health of the workload, both cloudwatch and
cloudtrail logs were analyzed. We designed metrics that allowed to assess the number of
lambda functions that were successful, the number that failed, most common fails, times
consumed by each process, amount of data processed and stored by each process, and
services up and down time, with the additional metrics of cpu and I/O utilization, throwing
alerts on peaks.

OPE-002 - Workload health metrics are collected and analyzed

As stated before, the metrics are collected through cloudwatch and cloudtrail and stored in
an s3 bucket for further analysis. This analysis is crawled by glue and queried through
athena, allowing it to be visualized with the PowerBI license the client currently owns. We
have recommended the use of AWS QuickSight in order to facilitate the reporting of these
metrics. The AWS Personal Health Dashboard is also used to monitor certain workload
health metrics, due to the easiness of use.

OPE-003 - Operational enablement

The handover process was carried out by stages. In this line, we handled documentation
and accompanied the operational personnel understood the code developed and the
solution as a whole. The IT personnel, who will support the solution, were familiar with AWS
cloud services, since they already manage other solutions. We worked with possible fails
with lambdas, SQS and redshift, showing them how to debug the errors through cloudwatch
logs and AWS services, including code fails, health checks and fails, and errors due to
insufficient concurrency.

OPE-004 - Deployment testing and validation

A Development / Production schema was used to test the correct implementation of
every part of the process, including ingestion and etl jobs. Development was carried out and,
later on, after testing occurs in the development environment, the development team merges
work to the production environment and tests are done in the new environment again. This
schema was carried out through out the development process, and certain automation was
done through cloudformation

We handled over the process to Comafi IT teams once we reached production stage
for the whole process, training them in the use, monitoring and further development in case
they wanted to add new functionalities.

OPE-005 - Code assets are version controlled

The code is being version controlled through the use of git and github as cloud repository. As
part of this process, certain aspects of the process were handled as infrastructure as code
and versioned in the same repositories, thus allowing CI/CD in these aspects.

OPS-006 - Application and workload telemetry

Lambdas and SQS log execution data to Cloudwatch, as well as Redshift. Lambdas logs
include details of the execution process in order to be able to easily debug the data
processes. Metrics about concurrency and usage are also logged and can be queried if
needed.

Security - Identity and Access Management
Requirements in this category focus on best practices around AWS Identity and Access
Management (IAM) and other identity and access management systems owned by the APN
Partner.

IAM-001 - Access requirements are defined
We received an account with certain limitation in order to carry out only what needed. We
created and assigned roles and users as needed, looking to maintain the permissions as
limited as possible.

IAM-002 - Grant least privileges
Policies created were given fine grained access to the services and permissions needed. As
an example, we submit an example policy to unload data from Redshift to S3:
{
 “Version”:”2012-10-17″,
 “Statement”:[
 {
 “Effect”:”Allow”,
 “Action”:[
 “s3:PutObject”,
 “s3:DeleteObject”,
 “s3:ListBucket”
],
 “Resource”:[
 “arn:aws:s3:::redshift-testing-comafi*”
]
 }
]
}

IAM-003 - Static AWS Access Keys are not used for programmatic access.

There are no processes that use programmatic access through AWS Access Keys.

IAM-004 - Unique non-root credentials are used for interactive access.
Each consultant access the account with a different IAM user and credential. These are
provided by the IT Security Department of Comafi. Credentials were not shared between
individuals.

Security - Networking
Requirements in this category focus on security best practices for Amazon VPC and other
network security considerations.

NETSEC-001 - Security groups are tightly scoped.

Security groups were restricted to the minimum access policies, only allowing the needed ips
and ports.

NETSEC-002 - Data that traverses the Internet is encrypted in transit.

There are no endpoints traversing internet.

NETSEC-003 - Data stores are in private subnets.

For storage, we used both S3 and Redshift. Both data stores are in private subnets (S3 is
accessed through a VPC endpoint).

Security - IT Operations
Requirements in this category focus on IT security operations best practices including
logging, monitoring, incident response, and data classification.

SECOPS-001 - Cryptographic keys are managed securely.

Data is encrypted through the managed AWS services. No user provided keys were used.

AWSAPI-001 - Official AWS SDKs are used to call AWS API endpoints.

Programming Language used was python and pyspark. The access to aws services were
done vía AWS Cli, and AWS Wrangler was used in the ETL process.

Reliability
Requirements in this section focus on the ability of the solution to prevent, and quickly
recover from failures to meet business and customer demand.

REL-001 - Deployment automation.

In order to deploy services, during the development process, AWS Management Console
was sometimes used, due to the simplicity. Once a stable phase was achieved, further
changes and solutions were done through AWS CLI and Cloud Formation.

REL-002 - Availability requirements are defined for the solution.

In relation to individual zone failure, RTO and RPO is automatically managed by AWS since
it uses replication and continuous backups to enhance availability and improve data
durability and can automatically recover from node and component failures.
In case of availability zone disruption, the RTO and RPO is managed through snapshots
storage, with a periodicity according to the requirements set by the client. In case of a
availability zone disruption, the RTO and RPO max is around 2 hs, with the process taking
into account the restoration of the snapshot saved in S3.

REL-003 - The solution adapts to changes in demand.

The provided solution adapts to changes in demand. ETL jobs are carried out mostly through
Lambdas, that will be concurrently launched as more demand is needed. In the same sense,
S3 allows scalability in a transparent way. Redshift nodes where not set on auto scaling
since the client wanted to manage them manually in order to keep the cost as tight as
possible.

Cost Optimization
Requirements in this category relate to the APN Partner's ability to help customers run
systems that deliver business value at the lowest price point.

COST-001 - Total cost of ownership (TCO) analysis or cost modeling was done.

Through the process of development, we suggested several changes to the
architecture, as can be seen in the different architecture diagrams. Some of these changes
were carried out in order to optimize the costs of the solution The estimated costs for redshift
included 4 environments, the first three being sandbox, dev and test, each with two nodes,
and the fourth being production with a 3 nodes schema.

US East (N.
Virginia)

Amazon
Redshift

0 365 4380 USD (2 instances) dc2.large
OnDemand

US East (N. Amazon 0 365 4380 USD (2 instances) dc2.large

Virginia) Redshift OnDemand

US East (N.
Virginia)

Amazon
Redshift

0 365 4380 USD (2 instances) dc2.large
OnDemand

US East (N.
Virginia)

Amazon
Redshift

0 547,5 6570 USD (3 instances) dc2.large
OnDemand

Total Costs 1642,5 19710

This estimation was evaluated according to the client needs, although we

recommended to purchase upfront instances when possible.

